
Stochastic Quadrature Formulas 

By Seymour Haber 

Abstract. A class of formulas for the numerical evaluation of multiple integrals is de- 
scribed, which combines features of the Monte-Carlo and the classical methods. For 
certain classes of functions-defined by smoothness conditions-these formulas provide 
the fastest possible rate of convergence to the integral. Asymptotic error estimates are 
derived, and a method is described for obtaining good a posteriori error bounds when using 
these formulas. Equal-coefficients formulas of this class, of degrees up to 3, are con- 
structed. 

1. Introduction. In the simplest "Monte-Carlo" scheme for numerically approxi- 
mating the integral 

I f f(x)dx 

(x = (x', x2, *.. , x8) is a vector in s-dimensional Euclidean space; G8 is the closed 
unit cube 0 < xi < 1 i = 1, 2, ***, s), one chooses N points xi, ***, XN at random 
in GU and takes the quantity 

N 

Jo E f(xi) 

as an estimate of I. The error of the estimate is stated probabilistically; Jo is re- 
garded as a random variable, defined in terms of the random variables xi, *-* *, XN 

which are taken to be independent (or at least pairwise independent), and uniformly 
distributed on G68. Then the mean value m(Jo) is I, and the standard deviation 
o(Jo) is CoN-"'2 (for f E L2(G8)), where CO is a constant depending on f; it is usual 
to consider 3o- (or even 2a) as a reliable upper bound on I - Jol. 

In [1] and [2] I proposed two modifications of this scheme: In the first, for 
N = Ks, K an integer, G, is partitioned into N congruent subcubes; ordering these 
in some manner, a single point xi is chosen at random from the ith subcube, and 

N 

Ji = EAxi) 

is taken as the estimate of I. In the second, the same partition of G, is used, and, 
for each i, xi is chosen as before and the point symmetrically opposite it in the ith 
subcube is denoted xi'; and the integral is estimated by 

1N 
J2 = 2N E WExi) + f (xi')). 

These estimates have the following property: Let D,, denote the set of functions f 
defined on G, and such that 
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is continuous on Gs whenever n1 + n2 + -.. + n8 _ n. Then for f C D' 

a(J 1) = (C1 (f) + o (1))N-(l /s+l/2) 

and forf CD 

0a(J2) = (C2(f) + o (1))N-(2/s~l12 

The surprising point about these estimates is that if one evaluates I by any 
classical quadrature method-Newton-Cotes, Gaussian, etc.-the best that could 
be said in general forf C D 8 is that the error is O(N-'/8) and forf E Ds2 is that the 
error is O(N-2 /s). Thus for the function classes involved, the probabilistic estimates 
J1 and J2 simply add the 2 which is characteristic of Monte-Carlo to the best 
exponents of convergence obtainable by classical methods. 

This is in fact part of a general situation. N. S. Bahvalov [3], in a study of 
lower bounds on quadrature errors, showed that for the class Ds8 the error of any 
deterministic method is Q(N-nIs)*; for methods with probabilistic features the lower 
bound he found was a = Q(N-(n/s+l /2)). For the set of periodic functions in Dsn he 
constructed a probabilistic method for which in fact a = O(N-(nI+?1/2)). 

In this paper I shall describe a large class of formulas which combine the Monte 
Carlo approach with classical considerations to give errors of the order of N-(n/s+l12) 

for the class D 8; and I will construct, in the case s = 2, formulas of this class 
having some especially desirable properties. The basic idea is the modification of the 
Monte-Carlo sampling and averaging to produce formulas which give exact answers 
for certain classes of polynomials. This lets us obtain the additional accuracy which 
arises from the possibility of approximating the functions to be integrated by 
polynomials-and it is this possibility which underlies the classical approach to 
numerical quadrature. Most of these results were announced without proof in [4]. 

For convenience I shall deal with integration, not over G8, but over the larger 
cube -1 < xi < 1 i = 1, 2, ***,swhichIshallcall H8. 

2. Stochastic Quadrature Formulas. 
Definition. A "stochastic quadrature formula (s.q.f.) of degree n (for H,)" is a 

sequence of 1-dimensional random variables Al, ..., Ak and s-dimensional random 
variables X1, *i*, Xk such that: 

(1) E=il A %P(Xi) = JHs P for every polynomial P (in s variables) of degree 
n or lower; and there is some polynomial of degree n + 1 for which this equality 
does not hold. 

(2) For anyf E L2(G.), m(Zksi Aif(Xi)) = fHs f (where "m(.)" denotes the 
mean value of a random variable). 

For example, X1 uniformly distributed over Hs, X2 = -X1, and Al A2= 28-1 
define an s.q.f. of degree 1. 

I shall write "Q(f)" for Jtil A i(f(X%)), and speak of "the quadrature formula 
Q or the "k-point quadrature formula Q." In the usual way one may apply an 

* Hardy's notation: f = 12(g) iff g = 0(f). 
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s.q.f. Q to any region A obtainable from G8 by an affine transformation, without 
changing its degree. The adapted formula will be denoted "QA." I shall denote by 
"QM" the formula resulting from partitioning H8 into M congruent subcubes and 
applying Q independently to each. The letter N will be reserved for the number of 
function evaluations used in a quadrature formula; if Q is a k-point s.q.f., then for 
QM, N = k1M. 

THEOREM 1. There exist s.q.f.'s of any degree. 
Proof. Let n be any integer > 0. Let 1, 02, . , FLL = (n + s)!/n!s!, be the 

distinct monomials of degree n or less in s variables. Let xi, *, L be points in H8 
such that the matrix (0j(xj)) is nonsingular. (That this can be done is shown, e.g., 
in [4].) Then for any f defined on H8, there is a unique polynomial of degree n or less 
which coincides with f at x1, * -, XL; call it Pf. Let X1 be a random variable uni- 
formly distributed on H8, and set 

Q (f) = 2 (f (Xi)-Pf (X)) +f Pf; 
H8 

Q is an s.q.f. of degree n. (Formally, in the notation of the Definition, there are 
L + 1 random variables Xi, the first of which is XI while the last L are concentrated 
at the points xi, *-*, XL respectively; A1 1, while the last L Ai's are expressions 
involving the Xi, arising from Pf(Xl) and fH8 Pf.) 

The s.q.f.'s constructed in this proof are not apt to be practically useful. 
The next theorem shows how stochastic quadrature formulas can be used to 

obtain approximations with errors of the order desired. We make the following 
notational conventions: 

Bold-face letters i and j will denote ordered n-tuples of (not necessarily distinct) 
integers between 1 and s. If i = (ilj i., in), x is a point in s-space, and f is a 
function of s variables, then we set 

(i) ______________n _i il__ 
_I 

ji 
. 

in 

(FXi)... (UaX in) X = X *X *****X 
~ Oxtl)..Oxfl x- *~ 

THEOREM 2. If Q is a k-point stochastic quadrature formula of degree n -1, and 
f E Ds8 , then 

(2) 0_(QM(f)) __C()X(f/+/)M 
where 

(3) C(f) = 
28/2 n! mI j ) 

and 

(4) miu = m((Q(x ) 'x )(Q( W) - 

Here the sum in (3) is over all n-tuples i and j of integers from 1 to s, and "g(M) 
h(M)" means g(M)/h(M) - - 1 as M - oo. 

Note that in terms of the number N = kM of function evaluations in QM, 
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Proof. Let K1, ***, KM be the subcubes into which H8 is partitioned, enumerated 
somehow. Then, since Q is applied to the different K's independently, 

M 

(6) Y2(QM(f)) = ,a (Qxr(f)) 
r=l 

Let Cr be the center of Kr, and, for x E Kr, set &- X-Cr. Then, since f G Dsn 
for x C Kr we can write 

f(x) = f(Cr) + Z f( )(Cr)& + _ f(i)(C)&I + 
(7) 2!~~~~~~~~ 2 

* + n! Z f((Cr)& + o(M 1 ) 

where EL, L = 1, 2, ***, n, is over all L-tuples i of integers from 1 to s. 
Since Q is of degree n - 1, we have 

a (QKr(f)) = a (QKr(f) -' f) 

- (fl!)2 (Q(Z fK (Cr)& ) - ' ( f")(Cr)&i) + Rr) 

where Rr = O(M-nh,-I). 
Applying the affine transformation taking Kr onto H8, to the last integral, and 

noting that the integrand is a homogeneous polynomial of degree n, we have 

'Kr (E f ")(Cr)& ) - (M-1/8)n+8 f ( f")(Cr)Xi) 

and similarly 

QKr( f(i)(Cr)&) = (M-1/8)n+8Q( f(1)(Cr)x). 

Therefore, setting tr = -2(QK,(f)), we have 

tr =(2 (M /8)n?+a2 (Q( 
1 

f()(Cr)X) -| (Z f(')(Cr)X) + Rr') 

= 1 (M2/8)n+8sc2(Z f(')(C r))Q(X') - x') + Rr') 

where Rr' = o(1). 
Since, for any random variable X, o2(X) = m(X2) - m2(X), and m(Q(x') - fH8xI) 

= 0 by hypothesis, 

(M2/8)n+s8(n!)2t = m( f (Cr) (Q(xi) - 1 + O( 

= U if (Cr)f (Cr) + o(1) 

where the last sum is as in (3). 
Summing, we have: 



STOCHASTIC QUADRATURE FORMULAS 755 

(M2 s)n+s(n!)2o2(QM(f)) = 2 E mi ( f() (Cr) f () (Cr)) + o (M) 

Since 28/M is the (s-dimensional) volume of Kr, the inner sum is, for each i and j, a 
Riemann sum, and so can be written 

J f(i)f() + o(1) 
H8 

and the theorem follows. 
Though Theorem 2 gives an explicit (asymptotic) expression for the error of the 

quadrature formula Qm, it does not provide a practical a priori error estimate, 
since in most cases no useful estimate of the integrals appearing in (3) will be avail- 
able. However by a modification of the integration procedure a very useful a 
posteriori error estimate can be obtained: 

If we apply Q twice, independently, to each subcube Kr, denoting the results 
Q'r(f) and Q r(f), and replace QM(f) by 

M 

QM*(f) = A I (Q'Kr(f) + Q'fr(f))X 
r= 2 

it is clear that o2(QM*) = 2 o2(QM). We can then at the same time calculate the 

quantity 

(8) E (Q'rr(f) Q 
r(f)) 

which I shall call (oT*)2. Since 

2 M 
) 

(o*)2 - 1 m(Qr(f) - Q"(f))2 
4 r=1 

M 

- 
I oE (QKr(f))X r=1 

v* may be taken as an estimate of o(QM*(f)). In numerical experiments (with the 

very simplest Q's) reported in [2], a* turned out to be a very good estimate, for 

values of M which were not impracticably large. In practice, if one uses QM* for a 

succession of different values of M, A* can be regarded as quite reliable when 

M(n/8+1/2) v* remains approximately constant. 

3. Quadratures of Degree 2. In [1] an s-dimensional s.q.f. of degree zero with 

k = 1 was proposed; in [2] one of degree 1 with k = 2 (and equal coefficients) was 

found. For higher degrees the situation is more complex. It follows from a theorem 

of A. H. Stroud [5] that 

k- [n/2] ) 

]" denoting the greatest-integer function); and so, for n > 2, k cannot be in- 

dependent of s. I shall construct, in the case n = 2, some equal-coefficients quad- 
ratures. Equal-coefficients formulas have several advantages; they are apt to be 

computationally simpler, the coefficients are necessarily nonnegative, and they 
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have certain benefits as regards round-off and other random errors. 
For Q to have equal coefficients and to be of degree 0 or more, it must be of the 

form 

2s k 

(9) Q 2 E k(xi) 

The condition that Q(P) = fA P for P(x) -xI, x2, ***, xI, x'x, x'x2, ***, xSx8 is 

equivalent to: 

k 

Exii =O 0 1l 
.. s, 

i=1 

k 

(10) ZXiiXiL = 0 1 < j $ L < s, 
j=1 

k 

E (Xij)2 = k/3, j = 1, * *, s . 

Defining the k-vectors Vj = (X10, * ., Xk,), j= 1, 2, , s, and Vo 
(1/V/3) (1, 1, ***, 1), we see that (10) is just the condition that these vectors be 
orthogonal, and each of Euclidean length (k/3)1"2. 

The last requirement for Q to be an s.q.f. of degree 2 is that 

m( k f(Xi)) | f 

for any f E L2(H8). Now let gi(x), defined for all x in s-dimensional real space R8, 
be the probability density function of Xi. Then 

(11) m( k E f(Xi)) = | x) E gi(x) A 

so that the requirement on Q is equivalent to the condition 

k 

E Egi(x) 2- 5, xCH8, 
(12) i=I 

=0 , x I H 8 

Thus (9), (10), and (12) together are the necessary and sufficient conditions for Q 
to be a equal-coefficients s.q.f. of degree > 2. 

A consequence of (12) is that some one of the random variables X1, X2, ** , Xk 
must be able to take on the value (1, 1, *., 1); say it is X1.** Then the vectors 
V1, *..., V8 must all be able to have a projection of length 1 on the k-vector e1 = 

(1, 0, ** , 0). The projection of e1 on the subspace of Rk orthogonal to Vo is e' = 

((k - )/ik, -1/k, ** *, - 1/k), which is of length ((k - 1)/k)I /2. Therefore each 
Vi, 1 <_ i <_ s, must be able to have a projection of length (ki/(k - 1))1/2 on e'. This 
can occur with the lengths of the Vi shortest, and so with k minimal (since the length 

** Strictly speaking, (12) need hold only almost everywhere; so all that can be said is that for 
any e > 0, some Xi must be able to take values within distance e of (1, 1, *. . , 1). Modifying 
the argument which follows, to take account of this, would complicate its form without changing 
it essentially. 
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of each V. is (kc/3)1"2) when Vi, V2, * *, Vs are arranged symmetrically about e'. In 
this arrangement, which is the same as the configuration in Rs consisting of 
(1, 1, *., 1) and the natural basis vectors (1, 0, *, 0), (0, 1, 0,... *, 0), * * 
(O **, 0, 1), the cosine of the angle between each Vi and e' is 1/V\s. Thus the 
length of the projection of Vi on e' is at most (k/3s)"12 and therefore 

(k/3s)"12 > (k/(k - 1))1/2 

which proves: 
THEOREM 3. If 

28 k 

Q(J) = E J(xi) 

is an s.q.f. of degree 2 or more for H8, then k ? 3s + 1. 
(The above proof deals only with the case that the Xi have absolutely continuous 

distributions; it can easily be extended to the general case.) 
I shall first construct a formula of the desired type in the case s = 1, with k = 4. 

Here it is sufficient to find four 1-dimensional real random variables X1, * , X4 

such that the vector V1 = (X1, * , X4) and the respective probability densities 
g1,* *, g4 (assumed to exist) satisfy: 

V.vO = O, JJVI1J2 4/3, 
g(t) + ? + g4(t) = 2, -1 < t < 1, 

= 0, otherwise. 

I shall use the following notation: S is the (3-dimensional) subspace of R4 which is 
orthogonal to Vo; Hi, t is the plane which is the intersection of S with the hyperplane 
Xi = tin R4; z is the sphere of radius (4/3)1/2 and center at the origin in S; and 
C2, t is the circle Q n n1i, t. Then V1 C , and letting P denote the probability density 
function of V1 on ^, 

(13) Prob (Xi C [t- , t + 6]) = P, 

where D is the portion of z lying between 1i, t-6 and H1 t+. 

We now estimate the integral in (13): If x = (x', X2, X3, x4) is in I1io2 then xi = 0 
and, since Hi, o C S, the sum of the three other coordinates of x is zero. Therefore the 
4-vector whose ith coordinate is + 1 and whose other three coordinates are - 1/3 is 
orthogonal to Hi, o2 and so to Hi, t. This vector lies in S, and the ratio of its length to 
the absolute value of its ith coordinate is (4/3)112. It follows that the distance of 

Hit from the origin is t(4/3)1"2, and the distance from hi, t-a to Hi, t+a is 26(4/3)1"2. 
Thus the radius of cit is (4(1 - t2)/3)" 2, and a normal to z at any point of c ,t 
makes, with the normal to Hit, an angle whose sine is (1 - t2)"/2. Therefore the 
area of Di is, to within o(a), 

2 (4 (1 - t2)/3)"2 26(4/3) /2 167r 
if 

4 
< 1, ad is z(1 - t 2)1"2 3> 

if I t I< 1, and is zero if IftI > 1. 
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Now let m = m(P, ci,t) denote the mean of P over c ,t. Then 

Prob (Xi E [t - 6, t + 6]) = (16w/3)am + oQ() 

and therefore gi(t) = (8 r/3) m(P, ci, t). The condition on the gi is seen to be satisfied 
if m(P, cit) 3/(16 7r); and this is certainly true if P is constant, i.e., if V1 is uni- 
formly distributed on Z. This implies 

THEOREM 4. Let Y = (Y', Y2, Y3) be a random variable uniformly distributed 
on the sphere in R3 with center at the origin and radius (4/3)1 2. Let A = (aij) be a 
4 X 4 orthogonal matrix with a4,j = 1/2, j = 1, ***, 4. 

Set 

(14) Xj = aljY' + a2, jy2 + a3, jY3, j = 1, . . ., 4 

Then 

1 4 

Q~f W E f (Xi) 
2j=1 

is an s.q.f. of degree 2 for H1. 
Proof. In the notation of the discussion above, the transformation (14) can be 

written V1 = ZA, where Z = (Y', y2, Y3, 0). Since V1V1T = ZZT = yyT, and 

4 4 3 3 4 

E Xj = E Eai = jY E Za E = 0, 
j=1 j=1 i=1 i=1 j=1 

the transformation is an isometry of R3 into the subspace S of R4. Since Y is uni- 
formly distributed on the sphere (Y')2 + (y2)2 + (y3)2 - 4/3, V, is uniformly dis- 
tributed on A, which is what was required for Q to be of degree ? 2. That Q is not 
of degree 3 or higher can be seen directly by setting f(x) = x3 and noting that 
(X1, * * *, X4) can take the value (2V/2/3, - /2/3, - /2/3, 0). 

Remarks. (a) Matrices A of the form required in the theorem may be constructed 
by taking a basis for R4 containing the vector (1/2, ..., 1/2), and orthonormalizing 
to generate the remaining three rows of A. (b) The use of points uniformly distrib- 
uted on a sphere is numerically practical; for methods of generating pseudo-random 
points with that distribution see, e.g., [6] and [7]. 

By regarding an integral over Hs as an s-fold iterated integral, and applying 
the Q of Theorem 4 to each axis, we may construct s.q.f.'s of degree 2 for any s > 1; 
they will have k = 4s. A more efficient method of generalizing the result of Theorem 
4 is as follows: 

Let k ? 3s + 1 be an integer to be specified later. Let W1, . . *, W3,+1 be an 
orthonormal set of vectors in Rk, with W3,+1 = (1/V\k) (1, . . ., 1). For L = 1, 2, 
*.. s, let SL be the subspace of Rk spanned by W3L-2, W3L-1, and W3L; and let 2L 

be the sphere in SL centered at the origin and with radius (k/3)1 /2. Let A be the 
matrix whose rows are W1, ... * W3s+l, 

Let Y1, Y2, .. *, Y, be independent 3-dimensional random variables, each uni- 
formly distributed on the sphere in R3 with center at the origin and radius (k/3)" 2. 
For L = 1, 2, . . ., s, let ZL be the (3s + 1)-vector ((3s + 1)-tuple) all of whose 
entries are zero except for the 3L-2nd, 3L-lst and 3Lth, those being YLI, YL2, 

and YL3 respectively. Let Zo be the (3s + 1)-vector (0,... 0 0, (k/3)1"2). Set 
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(15) VL =ZLA. L =O 1, *.s. 

and set 

(16) Xi = (Vit V2,* i, Vs ), i = 1, .. * * k. 

The V's and X's are then related as in the discussion leading to Theorem 3, and 
so the condition that 

2s k 

Qwf = k E f (xi) 

be an s.q.f. of degree ? 2 is just that the V's be orthogonal and all of length (k/3)" 2, 
and that Eq. (12) hold. The geometrical conditions are satisfied, since 

VLVMT = ZLAA TZmT = ZLZm = kl/3, L = m 

=0, L P-m 

and it remains to check condition (12). 
Let t= (t', **, ts) be any point of Rs and let 61, s*, 8 be positive numbers. 

Since the Y's are independent, so are the V1, * * , VL; and so 

Prob ([Xi' -tl < ?a1, .Xi 2 - t21 < a2, *. jXis - t8f < as) 
8 8 

= fiProb (1Xi' - t'j < <j) = fIProb (IVjt - tjf < aj). 
j=1 j=1 

Now V3 = Yil W3j_2 + Yj2 W3j-l + Yj3 W3j, and so is in Sj. In fact, since AAT = 
Ii, it is uniformly distributed on 2j. Therefore 

Prob (IVi - t'j < Si) = 4ak/3 

where a = a(t0; i, j, 8j) is the area of the portion of 2j lying between the hyperplanes 
xi = V - a, and xi = ti + aj in Rk. 

Now let IIt = II t(i, j) be the intersection of the hyperplane xi = t with 5j. If 
0 = 0(i, j) is the angle between the ith coordinate vector in Rk and a normal to IIt 
in Si, then It/cos 01 is the distance of I1t from the origin. Then a(t) = 0 (for small aj) 
if It/cos 01 > (k/3)112; and when a(t) ? 0 fit cuts 2j in a circle of radius 
(k/3 - t2/cos2 0)1/2, and the normal to 2j at any point of this circle makes, with the 
normal to fit, an angle whose sine is (1 - 3t2/k cos2 0)1/2. Also, the distance between 
lt-a and rIt+a is 26/cos 0. Thus, to within o(a%), 

a = c- (1- 3(t3) 2 -1/2(2 )(k (t)2 ) 1/2 

Cos 0 lkcos2 0 3 Cos20 

= 4wraj(k/3)1/2(cos 0)r' 

and 

1 (jV? - < a_) _ ~(3/k)"12 +o1 
2aProb (-Vi 

-t I Si) = 
2 cos + 0(1) 

Since 

s /\ 

gi(t) = lim (1 Prob (IVi - tjl < aS), 
al8-1-, 0 j=l 
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it follows that 

/ s12 s 
(17) g (t) = 28 ) II (cos 0 (i, j)Y 

if, forj = 1, 2, *, s, tif < (k/3)1/2 cos 0(i, j); and g,(t) = 0 otherwise. Condition 
(12) then implies that for each i, gt(x) = 0 if x (E H,; it follows that for all i and j, 
we must have cos 0(i, j) _ (3/k)l/2. Therefore by (17) 

(18) gi(t) _ 2-5, i = 1,2 2k. 

Now for (12) to hold, there must be equality in (18) for every i; and this can happen 
only if 

(19) cos 0(i, j) = (3/k)1/2; 1 < i < k, 1 <j < S. 

So we see that (19) is a necessary and sufficient condition for (12). 
To calculate cos Oij, we note that Ho is the set of all vectors of Rk of the form 

aW3j2 + bW3j_1 + cW3j satisfying the equation 

aW3is2 + bW3ij_ + cW i, = 0; 

so that the vector 

W3j_2W3j_2 + W3tjlW3j-l + W~jW3j 

is normal to IHo (and so to IIt). The unit normal to the hyperplane xi = t in Rk is 
just the vector whose ith component is 1 and whose other components are zero; 
thus by taking inner products it is seen that 

(20) cos O.j = ((IV~j_2)2 + (WiV_1)2 + (Wij)2)1/2 

Combining (19) and (20), we have 
THEOREM 5. If 
(1) s is a positive integer and k is an integer > 3s + 1. 
(2) A = (Wij) is a (3s + 1) X k matrix such that 

(2a) W3,+,,j = k-"/2, 1 < j < k 
(2b) The rows of A, regarded as k-vectors, are orthogonal and each is of Euclid- 

ean norm 1. 
(2c) W~',j + Wi+1,j + W+2,j = 3/k for 1 ? j ? k and i = 1, 4,7, *7 , 

3s - 2. 

(3) Y1 = (Y11, 2 Y13), ..., Y= (Y81, YS22 Y83) are independent random 
variables, each uniformly distributed on the sphere in R3 with center at the origin and 
radius (k/3)1"2. 

(4) For j = 1, *., k, Xj = (Xj', *,*2 Xi8) is defined by 

Xj= YiTW3i-2,j + Yi W3i_- j + Yi3W3i , i = 1, * s. 

Then 

28 k 
Q(f) e 2 f (xt) 

is a stochastic quadrature formula of degree 2 for the s-cube H, 
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(It is easy to see, by an example, that it is not of higher degree.) 
It remains to be seen for which values of k do matrices A exist satisfying the 

requirements of the theorem. 

4. Hadamard Matrices. If we multiply the matrix A by k' /2, we obtain a matrix 
Al = (aij) whose rows are orthogonal and each of Euclidean norm k, and which 
satisfies the additional condition 

(21) a38+l,j = 1; a,j + a2+ i, + a+2, = 3, i = 1, 4, ** *, 3s -2; 
1 ?j ? k. 

A class of square matrices satisfying all these conditions, and which is in fact defined 
by the condition that the rows be orthogonal and that 

aj =?11, alliandj 

is the class of Hadamard matrices, which has been studied extensively in other 
connections (see, e.g., [8] - [11]). (Any Hadamard matrix may be converted into 
one in which all entries in the bottom row are +1, merely by multiplying each 
column of the original matrix by -1 whenever its bottom entry is -1.) We thus 
have 

THEOREM 6. If s is a positive integer, and k the least integer > 3s + 1 such that a 
k> X k Hadamard matrix exists, then there exists a k-point, equal-coefficients, stochastic 
quadrature formula of degree 2 for H8. 

Proof. Let M be the k X k Hadamard matrix, with all entries in the kth row 
equal to + 1. Let A be the matrix which consists of the bottom 3s + 1 rows of 
k-1"2 M. Then A satisfies all the requirements of Theorem 5. 

It is known that the order k of a Hadamard matrix must be 1 or 2 or a multiple 
of 4. It is conjectured that Hadamard matrices of order 4n exist for all integers n > 
1; it is known that such exist for all n < 50 except possibly for n = 47. Thus for 
s = 1, 5, 9, * * *, 65 equal-coefficients s.q.f.'s of degree 2 exist with k = 3s + 1, 
which is the least possible; and for 1 _ s < 65 they exist with k ? 3s + 4. The 
question of whether there exists, for every s, an equal-coefficients s.q.f. of degree 2 
with k = 3s + 1 is left open. In particular, for s = 2, Hadamard matrices provide 
an 8-point quadrature but the question of the existence of a 7-point formula is 
equivalent to the question of the existence of a 7 X 7 orthogonal matrix (axj) 
satisfying: 

al, + a2 ,j + a3,j = a4 ,j + a2,'j + a , j = 3/7, a7 ,j = 1/7,2 j =12 2, * ** 7; 

which I have been unable to resolve. 

5. Some Formulas of Degree 3. If 
k 

Q(f) = Aif(Xi) 

is an s.q.f. of degree 2n for H8, then 
= 

A.f(X) + f(-Xe) 
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is a (2k-point) s.q.f. of degree _ 2n + 1 for H. By this device each of the formulas 
of degree 2 constructed in the last two sections can be converted into an equal-co- 
efficients formula of degree 3. I do not know how close the number of points in the 
resulting formula is to the minimum number of points needed for an equal-co- 
efficients s.q.f. of degree 3. 

6. Comments. There is an apparent paradox in the way stochastic formulas are 
used. The random variables in terms of which the formula is defined are replaced, 
in practice, by well-defined mathematical rules for calculating "pseudo-random" 
numbers. Once this is done in any specific manner, the quadrature formula becomes 
deterministic, and Bahvalov's lower bound for the error, Q(N-n/8), applies. Yet the 
lower error estimate of Theorem 2 - O(N-nls-i /2)-is actually used, and found, in 
practice, to be quite valid ([1], [2]). The answer is as follows: Bahvalov showed that 
for each s and each n there is a constant Cn, such that, if Q is any deterministic 
N-point quadrature formula there is an f E D8n (f dependent on Q) whose nth 
order derivatives are bounded by 1 on H,, and such that 

(22) Q(f) f f | Cn, sN ' 

The functions constructed by Bahvalov to satisfy (22) are, naturally, of very special 
form; and if Q and Q' are two different realizations of a single s.q.f. by means of 2 
different methods of calculating pseudo-random numbers, different f's would be 
required to attain Bahvalov's lower bound for Q and for Q'. In plain, there is little 
reason to suspect that an integrand one comes across in practice, and determines to 
belong to Dsn is in fact one of the extreme members of Dn-relative to the particular 
numerical quadrature formula one is going to apply-for which the error is at, or 
near, the quantity on the right in (22). It might indeed happen, and could then only 
be regarded as a piece of extremely bad luck. That it should happen for a specific 
QM for each of several different values of M is a possibility; but one reasonably 
proceeds on the assumption that it will not happen. 

Similarly, while 3o- is usually taken as an upper bound on the error of a prob- 
abilistic quadrature, one may, by bad luck, have taken a sample which deviates 
from the mean (i.e., the integral) by 30o-. Indeed, for any given s.q.f. Q and number 
M, one can construct f's such that QM(f) is not at all close to being normally dis- 
tributed, so that deviations of 30o- may not be terribly unlikely. One can only fall 
back on the intuition that such f's, like the f's satisfying (22), simply do not occur 
in numerical problems; and the final justification for this intuition is in the good 
results achieved in actual calculation. 

Classically, there have been two main approaches to efficient numerical quad- 
rature. The first was to find formulas of maximum degree using a fixed number of 
points, or when this could not be done (as was generally the case with multiple 
integrals) to find formulas of as high a degree as could be managed using as few 
points as could be managed. In one dimension this approach produced the "Gaus- 
sian" quadrature formulas, see, e.g., [12, Chapters 7, 9, and 10]. [5] contains a sum- 
mary of work along this line for multiple quadrature, and an extensive list of refer- 
ences. Formulas of this type are generally applied to the integration of very smooth 
functions-the idea is that with each increase in the effort of calculation (which is 
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measured roughly by the number of points used in the quadrature formula), a 
formula of higher degree will be used, and more of the smoothness of the integrand 
will come into play. 

The second approach has been to find those formulas using a given number of 
points which minimize the quadrature error, or some functional related to it, over a 
certain function space; the function space is usually defined in terms of a condition 
on the smoothness of its members. A discussion of some such formulas is found in 
[12, Chapter 8]; S. L. Sobolev (see [13], and the references listed there), and R. E. 
Barnhill [15] have worked on such formulas for multiple integrals. The idea here is 
to take maximum advantage, for a given level of calculation effort, of the particular 
amount of smoothness the integrand in question does have. The degree of the formula 
used does not, generally, increase as the numbers of points is increased. 

The first approach has been the one more generally used, and successful, in 
one-dimensional quadrature. There is some reason to suppose that the second will 
be relatively more important in the higher-dimensional case. It seems that the 
functions of several variables that turn up for numerical integration in physical 
problems are quite commonly not very smooth, being discontinuous or having 
discontinuous or unbounded derivatives of fairly low order. Functions arising in 
practical problems are generally piecewise smooth; and in one dimension the 
"singularities," which occur at isolated points, can often be removed by various 
devices. In s > 1 dimensions the singularities will occur along manifolds of dimen- 
sion s - 1 or lower, and unless these manifolds are of very simple form (planar, in 
fact) there is not likely to be any practicable way of smoothing the function for 
integration. (For this reason the 2 added by stochastic quadrature formulas to the 
convergence exponent n/s for functions in D8n is important; for n often cannot be 
raised.) 

Theorem 2, together with Bahvalov's results, shows that stochastic quadrature 
formulas can give better results, for functions of a given degree of smoothness (i.e. 
in the class D82, for a given n) than any deterministic formulas; the formulas de- 
rived above certainly do this for sufficiently large N. This suggests that the second 
approach to efficient quadrature may best be carried on in the context of stochastic 
quadrature formulas. 

The classical (first) approach enters into the present one in the attempt to find 
s.q.f.'s of given degree with least possible k. We wish to minimize k because the 
calculation effort in using an s.q.f. is roughly proportional to k and to M; but it also 
depends on other factors, such as the difficulty of generating pseudo-random points 
imitating the distribution properties of the random variables involved. These 
questions remain for future investigation. 

In practice, one of the main advantages of stochastic quadrature formulas is the 
availability of a good a posteriori error estimate. A disadvantage is the restriction 
of the number of points used to numbers of the form 28k, 38k, 4sk, .. *, (2s(2k), 
3s (2k), ... when the a posteriori error estimate is being established). For even 
moderate values of s, there are not many numbers of this form that are small 
enough to make the calculation practicable. 

As the cost of computation goes down, it becomes practical to use very large 
numbers of points in quadrature formulas. Present day computers have begun to 
make numerical multiple integration practical without extensive adaptation of 
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techniques to each particular problem. Further decreases in cost, by one or two 
orders of magnitude, should be accomplished by machines currently being planned; 
and it should become possible to do numerical multiple integration in a routine 
manner. 
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